Research Group of Dr. T. Ullrich
Institute for Numerical Simulation
maximize

Welcome to the research group of Dr. Tino Ullrich

Dr. Tino Ullrich
Address: Hausdorff Center for Mathematics
Endenicher Allee 62
53115 Bonn
Germany
Office: Villa Maria 1.003
Phone: +49 228 73 62224
E-Mail: tino.ullrich.hcm.uni-bonn.de

News

IBC workshop at FoCM 2017

Frances Kuo, Erich Novak and Tino Ullrich will be the organizers of the Information based Complexity workshop at the FoCM 2017, July 10-19th, Barcelona.

Mini-symposium on preasymptotics at MCQMC 2016

For this year's MCQMC conference, held at Stanford university, Thomas Kühn (Leipzig) and Tino Ullrich have organized a mini-symposium on preasymptotics for multivariate approximation problems.

Plenary talk at SGA 2016

Tino Ullrich will be plenary speaker at the 4th Workshop on Sparse Grids and Applications in Miami (FL), October 4-7, 2016.

Advanced course on Hyperbolic Cross Approximation

Here you find the slides for the advanced course on Hyperbolic Cross Approximation, which Tino Ullrich gave together with Vladimir N. Temlyakov at the CRM Barcelona in May 2016.

IBC Young Researcher Award 2014

Tino Ullrich is the winner of the Information Based Complexity Young Researcher Award 2014.

Group publications (since 2013)

Preprints:

[1] G. Byrenheid and T. Ullrich. Optimal sampling recovery of mixed order Sobolev embeddings via discrete Littlewood-Paley type characterizations. ArXiv e-prints, 2016. arXiv:1603.04809 [math.NA].
bib | arXiv ]
[2] C. Kacwin, J. Oettershagen, and T. Ullrich. On the orthogonality of the Chebyshev-Frolov lattice and applications. ArXiv e-prints, 2016. arXiv:1606.00492 [math.NA].
bib | arXiv | .pdf 1 ]
[3] T. Kühn, S. Mayer, and T. Ullrich. Counting via entropy: new preasymptotics for the approximation numbers of Sobolev embeddings. ArXiv e-prints, 2015. arXiv:1505.00631 [math.NA].
bib | arXiv | .pdf 1 ]
[4] G. Byrenheid, L. Kämmerer, T. Ullrich, and T. Volkmer. Non-optimality of rank-1 lattice sampling in spaces of hybrid mixed smoothness. ArXiv e-prints, 2015. arXiv:1510.08336 [math.NA].
bib | arXiv | .pdf 1 ]
[5] V. K. Nguyen, M. Ullrich, and T. Ullrich. Change of variable in spaces of mixed smoothnes and numerical integration of multivariate functions on the unit cube. ArXiv e-prints, 2015. arXiv:1511.02036 [math.NA].
bib | arXiv | .pdf 1 ]
[6] D. Dung, V. N. Temlyakov, and T. Ullrich. Hyperbolic Cross Approximation. ArXiv e-prints, 2015. arXiv:1601.03978 [math.NA].
bib | arXiv ]

Journal Papers:

[1] G. Byrenheid, D. Dũng, W. Sickel, and T. Ullrich. Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in Hγ. J. Approx. Theory, to appear.
bib | arXiv | .pdf 1 ]
[2] M. Ullrich and T. Ullrich. The role of Frolov's cubature formula for functions with bounded mixed derivative. SIAM Journ. on Numerical Analysis, to appear.
bib | arXiv | .pdf 1 ]
[3] H. Kempka, M. Schäfer, and T. Ullrich. General coorbit space theory for quasi-Banach spaces and inhomogeneous function spaces with variable smoothness and integrability. Journal of Fourier Analysis and Applications, to appear.
bib | arXiv ]
[4] A. Seeger and T. Ullrich. Haar projection numbers and failure of unconditional convergence in Sobolev spaces. Mathematische Zeitschrift, to appear.
bib | arXiv ]
[5] A. Seeger and T. Ullrich. Lower bounds for Haar projections: deterministic examples. Constructive Approximation, to appear.
bib | arXiv | .pdf 1 ]
[6] A. Hinrichs, L. Markhasin, J. Oettershagen, and T. Ullrich. Optimal quasi-Monte Carlo rules on higher order digital nets for the numerical integration of multivariate periodic functions. Num. Math, 134:163-196, 2016.
bib | arXiv ]
[7] D. Dung and T. Ullrich. Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square. Math. Nachrichten, 288:743-762, 2015.
bib | arXiv | .pdf 1 ]
[8] T. Kühn, W. Sickel, and T. Ullrich. Approximation of mixed order Sobolev functions on the d-torus – asymptotics, preasymptotics and d-dependence. Constructive Approximation, 42:353-398, 2015.
bib | arXiv | .pdf 1 ]
[9] S. Mayer, T. Ullrich, and J. Vybiral. Entropy and sampling numbers of classes of ridge functions. Constructive Approximation, 42:231-264, 2015.
bib | DOI | arXiv | .pdf 1 ]
[10] A. Hinrichs and S. Mayer. Entropy numbers of spheres in Banach and quasi-Banach spaces. J. Approx. Theory, 200:144-152, 2015.
bib | arXiv | .pdf 1 ]
[11] M. Gnewuch, S. Mayer, and K. Ritter. On Weighted Hilbert Spaces and Integration of Functions of Infinitely Many Variables. J. Complexity, 30(2):29-47, 2014.
bib | .pdf 1 ]
[12] T. Ullrich. Optimal cubature in Besov spaces with dominating mixed smoothness on the unit square. J. Complexity, 30:72-94, 2014.
bib | .pdf 1 ]
[13] T. Kühn, W. Sickel, and T. Ullrich. Approximation numbers of Sobolev embeddings-sharp constants and tractability. J. Complexity, 30:95-116, 2014.
bib | .pdf 1 ]
[14] D. Dung and T. Ullrich. N-widths and ε-dimensions for high-dimensional approximations. Found. Comput. Math., 13:965-1003, 2013.
bib | .pdf 1 ]

Other Reports:

[1] S. Mayer. Reconstruction of ridge functions from function values. Oberwolfach Report No. 6, 2015. Extended abstract.
bib | DOI | .pdf 1 ]
[2] S. Mayer. Tractability results for classes of ridge functions. Oberwolfach Report No. 49, 2013. Extended abstract.
bib | DOI | .pdf 1 ]