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1 Introduction

As it is well-known, abstract interpolation theory has its roots on interpo-
lation theorems for bounded operators between Lp spaces due to M. Riesz
and Thorin, and to Marcinkiewicz. It was established in the early 1960s with
the work of J.-L. Lions, Peetre, A.P. Calderón, Gagliardo, S.G. Krein and
other authors. Since then it has attracted considerable interest in itself and
has found many important applications, not only in analysis but also in some
other areas of mathematics as one can see, for example, in the books by Butzer
and Berens [5], Bergh and Löfström [3], Triebel [24], Bennett and Sharpley
[2], Brudny̆ı and Krugljak [4], Connes [14] and Amrein, Boutet de Monvel and
Georgescu [1].

The greater part of interpolation theory refers to couples of spaces and opera-
tors acting on couples but some problems in functional analysis have also led
to study interpolation spaces generated by three or more spaces, and even an
infinite family of spaces. The first contribution to this question can be found
in the paper by Foiaş and J.-L. Lions [20] and then in the papers by Yoshikawa
[26], Favini [17], Sparr [23] and Fernandez [18], among others. The step from
two to more than two spaces bears a number of difficulties of combinatorial
and geometrical nature, to the effect that basic results in the classical theory
for couples are no longer true for finite families (N -tuples) of spaces.

We work here with the interpolation methods for N -tuples introduced by Pee-
tre and the first present author [13], and further developed in [12,8,11,16,10,19]
among other papers. These methods are defined by means of a convex polygon
Π in the plane R2 and a point (α, β) in the interior of Π. The spaces of the
N -tuple should be thought as sitting on the vertices of Π. Using this picture,
one introduces K- and J-functionals with two parameters and then K- and
J-spaces by using an (α, β)-weighted Lq-norm (see Section 2 for the proper
definitions). In the special case where Π is equal to the simplex, we recover
(the first nontrivial case of) spaces studied by Yoshikawa and Sparr, and if Π
coincides with the unit square, then we get spaces introduced by Fernandez.

Working with the multidimensional methods, an important question is to de-
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termine the spaces that come up by interpolation of concrete N -tuples. For this
task, since many natural N -tuples are formed by real interpolation spaces, it
turns out to be very useful to have reiteration results between the real method
and the methods associated to polygons. This question has been considered
in [9,16,7]. Let Ā = {A1, ..., AN} be an N -tuple formed by Banach spaces Aj

which are of class θj with respect to a fixed Banach couple {X, Y } (precise def-
initions are given in Section 2). Reiteration formulae describe the interpolation
spaces generated by Ā in terms of sums and intersections of real interpolation
spaces generated by {X, Y }. Results established by Ericsson [16] require ex-
tra assumptions on the polygon Π, which are stated by using four auxiliary
numbers δ, δ′, ρ, ρ′ and relations between them and the vertices of Π, the θj

and the point (α, β). Recently, in the limit case q = ∞ for the K-method
and q = 1 for the J-method, Cobos, Fernández-Cabrera and Mart́ın [7] have
proved formulae which do not need any auxiliary assumption.

In the present paper we continue the research of [7] by showing that if (α, β)
does not lie in any diagonal of Π then the reiteration formulae hold for any
1 ≤ q ≤ ∞ without any extra condition on the polygon. Moreover, we show
by counterexamples that if (α, β) lies on a diagonal then the known results for
(∞, K)- and (1, J)-methods fail in general for other values of q.

The approach we follow is different from that in [7] which is based on special
features of ℓ1- and ℓ∞-norms. Our strategy is to establish several geometrical
and algebraic results that allow to apply some ideas developed by Ericsson
[16] without requiring any extra condition on the polygon.

The paper is organized as follows. In Section 2 we review some basic results on
K- and J-spaces defined by polygons. In Section 3 we establish the reiteration
formulae and we write down some concrete cases for Lorentz function spaces
and Besov spaces. Finally, Section 4 contains the counterexamples for the case
when (α, β) lies on a diagonal.

2 Preliminaries

By a Banach N-tuple we mean a family Ā = {A1, ..., AN} of N Banach spaces
Aj which are continuously embedded in a common Hausdorff topological vec-
tor space. When N = 2 we simply call {A1, A2} a Banach couple.

Let Π = P1 · · ·PN be a convex polygon in the plane R2, with vertices Pj =
(xj , yj). Given the Banach N -tuple Ā, each space Aj should be thought of as
sitting on the vertex Pj. For t, s > 0 and a ∈ Σ(Ā) = A1 + ... + AN we define
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the K-functional by

K(t, s; a) = K(t, s; a; Ā) = inf
{ N

∑

j=1

txjsyj‖aj‖Aj
: a =

N
∑

j=1

aj , aj ∈ Aj

}

.

For a ∈ ∆(Ā) = A1 ∩ ... ∩ AN , the J-functional is given by

J(t, s; a) = J(t, s; a; Ā) = max{ txjsyj‖a‖Aj
: 1 ≤ j ≤ N } .

Given any interior point (α, β) of Π [(α, β) ∈ Int Π] and any 1 ≤ q ≤ ∞,
the K-space Ā(α,β),q;K is defined as the collection of all elements a ∈ Σ(Ā) for
which the norm

‖a‖Ā(α,β),q;K
=

(

∞
∫

0

∞
∫

0

[t−αs−βK(t, s; a)]q
dt

t

ds

s

) 1
q

is finite (the integral must be replaced by the supremum if q = ∞).

The J-space Ā(α,β),q;J consists of all those a ∈ Σ(Ā) which can be represented
as

a =

∞
∫

0

∞
∫

0

v(t, s)
dt

t

ds

s
(convergence in Σ(Ā)) (2.1)

with a strongly measurable ∆(Ā)-valued function v satisfying

(

∞
∫

0

∞
∫

0

[t−αs−βJ(t, s; v(t, s))]q
dt

t

ds

s

)
1
q

< ∞ . (2.2)

The norm in Ā(α,β),q;J is given by

‖a‖Ā(α,β),q;J
= inf

v

{(

∞
∫

0

∞
∫

0

[t−αs−βJ(t, s; v(t, s))]q
dt

t

ds

s

) 1
q
}

where the infimum is taken over all v satisfying (2.1) and (2.2) (see [27] for
properties of the Bochner-integral).

These spaces were introduced by Cobos and Peetre [13]. In the special case
where Π is equal to the simplex {(0, 0), (1, 0), (0, 1)} we get

K(t, s; a) = inf{‖a1‖A1 + t‖a2‖A2 + s‖a3‖A3 : a =
3

∑

j=1

aj , aj ∈ Aj}

and we recover (the first nontrivial case of) spaces investigated by Sparr [23].
When Π is the unit square {(0, 0), (1, 0), (0, 1), (1, 1)} then

K(t, s; a) = inf{‖a1‖A1 + t‖a2‖A2 +s‖a3‖A3 + ts‖a4‖A4 : a =
4

∑

j=1

aj , aj ∈ Aj}
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and we obtain spaces studied by Fernandez [18].

Given any Banach couple {X, Y }, the real interpolation space (X, Y )θ,q can
be described in a similar way, but by replacing the polygon by the segment
[0, 1], the point (α, β) by θ ∈ (0, 1) and by imagining that X is sitting on 0
and Y on 1. We denote the relevant functionals by

K̄(t, a) = K̄(t, a; X, Y ) = inf{‖x‖X + t‖y‖Y : a = x + y , x ∈ X , y ∈ Y }

and

J̄(t, a) = J̄(t, a; X, Y ) = max{‖a‖X , t‖a‖Y } .

Note that K̄(1, ·) and J̄(1, ·) coincide with the canonical norms on X +Y and
X∩Y , respectively. For the real method it is well-known that K- and J-spaces
coincide with equivalence of norms, i.e.

(X, Y )θ,q

=
{

a ∈ X + Y : ‖a‖(X,Y )θ,q
=

(

∞
∫

0

[t−θK̄(t, a)]q
dt

t

)1/q

< ∞
}

=
{

a ∈ X + Y : a =

∞
∫

0

u(t)
dt

t
with

(

∞
∫

0

[t−θJ̄(t, u(t))]q
dt

t

)1/q

< ∞
}

(see [3,24]). However, working with N -tuples (N ≥ 3), K- and J-spaces do
not agree in general. We only have Ā(α,β),q;J →֒ Ā(α,β),q;K (see [13]), where →֒
means continuous inclusion.

The following property of invariance under affine bijections is shown in [12,
Remark 4.1]: If R is any affine bijection of R2 then the K- and the J-space
defined by means of Π and (α, β) coincide (with equivalence of norms) with
those defined by R(Π) = RP1 · · ·RPN and the point R(α, β).

The location of (α, β) in Π will play an important role in our later considera-
tions. Let P(α,β) be the collection of all triples {i, k, r} such that (α, β) belongs
to the triangle with vertices Pi, Pk, Pr (see Figure 2.1). We allow that (α, β)
lies in any of the edges of this triangle.
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Figure 2.1

Given any {i, k, r} ∈ P(α,β) we write (ci, ck, cr) for the unique barycentric
coordinates of (α, β) with respect to Pi, Pk, Pr. So,

(α, β) = ciPi + ckPk + crPr , ci + ck + cr = 1 .

Let {X, Y } be a Banach couple and let Z be a Banach space such that X∩Y →֒
Z →֒ X + Y . For 0 ≤ θ ≤ 1, we say that Z is of class C(θ; X, Y ) if there is a
constant c > 0 such that

K̄(t, a) ≤ ctθ‖a‖Z for all a ∈ Z (2.3)

and

‖a‖Z ≤ ct−θJ̄(t, a) for all a ∈ X ∩ Y. (2.4)

It is clear that X is of class C(0; X, Y ) and Y is of class C(1; X, Y ). When
0 < θ < 1, conditions (2.3) and (2.4) can be formulated by the inclusions

(X, Y )θ,1 →֒ Z →֒ (X, Y )θ,∞ (see [3,24]).

Let Ā = {A1, ..., AN} be a Banach N -tuple. For each {i, k, r} ∈ P(α,β) such
that (α, β) belongs to the interior of the triangle ∆ikr = PiPkPr, we put
Ãikr = {Ai, Ak, Ar} and we write K̃, J̃ for K- and J-functionals defined by
means of ∆ikr. Clearly,

K(t, s; a; Ā) ≤ K̃(t, s; a; Ãikr) , a ∈ Ai + Ak + Ar

and

J̃(t, s; a; Ãikr) ≤ J(t, s; a; Ā) , a ∈ ∆(Ā) .

Hence,

Ā(α,β),q;J →֒ (Ai, Ak, Ar)(α,β),q;J →֒ (Ai, Ak, Ar)(α,β),q;K →֒ Ā(α,β),q;K . (2.5)
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Suppose now, in addition, that each Aj is of class C(θj ; X, Y ), 0 ≤ θj ≤ 1,
1 ≤ j ≤ N . Let

θikr = ciθi + ckθk + crθr.

It is shown in [16, Corollary 4] or [7, (2.9)] that if θi, θk, θr are not all equal
then we have with equivalence of norms

(Ai, Ak, Ar)(α,β),q;J = (Ai, Ak, Ar)(α,β),q;K = (X, Y )θikr ,q . (2.6)

We close this section with a remark concerning notation. Subsequently, given
two quantities or two real-valued functions f, g we write f . g whenever there
is a constant c > 0 such that f(x) ≤ cg(x) for all x. If f . g and g . f we
put f ∼ g.

3 The reiteration results

In this section we establish the reiteration formulae between the real method
and the methods associated to polygons. We start by proving several geomet-
rical and algebraic results that will allow to apply some ideas developed in
[16] to polygons in a much more general setting.

Definition 3.1 Let Π = P1 · · ·PN be a convex polygon with Pj = (xj , yj), let
(α, β) ∈ Int Π and let P(α,β) be the set introduced in Section 2. Let further
{θ1, ..., θN} be a family of N numbers with 0 ≤ θj ≤ 1 such that for each
{i, k, r} ∈ P(α,β), where (α, β) ∈ Int PiPkPr, the values θi, θk, θr are not all
equal. If (α, β) ∈ PiPk we assume that θi 6= θk. For {i, k, r} ∈ P(α,β) let

θikr = ciθi +ckθk +crθr be the number introduced above and define 0 < θ̄, θ̆ < 1
by

θ̄ = min{θikr : {i, k, r} ∈ P(α,β)} , θ̆ = max{θikr : {i, k, r} ∈ P(α,β)}.

Definition 3.2 Under the assumptions of Definition 3.1, two affine functions
f, g : R2 → R are said to be admissible if f satisfies

f(xj, yj) ≤ θj for 1 ≤ j ≤ N and f(α, β) = θ̄ ,

and g satisfies

g(xj, yj) ≥ θj for 1 ≤ j ≤ N and g(α, β) = θ̆ .

Lemma 3.3 Under the assumptions of Definition 3.1, there exists a pair of
non-constant admissible functions f and g.
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Proof. Let P̂j = (xj , yj, θj) for 1 ≤ j ≤ N and let Π̂ be the convex hull

of P̂1, . . . , P̂N . Then Π̂ is a convex polyhedron in R3 whose projection onto
the first two coordinates is Π. The polyhedron Π̂ does not necessarily have
inner points. The vertical line l(α,β) = {(α, β, z) : z ∈ R} intersects Π̂ in a line
segment, that may be degenerated into a single point.

Let (α, β, z̄) be the lower end-point of l(α,β) ∩ Π̂. We pick a face F̄ of Π̂ that
contains (α, β, z̄). (There are two possible choices if (α, β, z̄) belongs to an
edge of Π̂. If Π̂ has no inner points, we put F̄ = Π̂.) The plane π̄ determined
by F̄ supports Π̂ in the sense that Π̂ is contained in the half-space π̄+ =
{(x, y, z + w) : (x, y, z) ∈ π̄, w ≥ 0}. We interpret π̂ as the graph of an affine
functional f : R2 → R and shall show that f satisfies our claim.

We have f(xj , yj) ≤ θj for 1 ≤ j ≤ N , because

(xj , yj, θj) = P̂j ∈ Π̂ ⊆ π̄+ = {(x, y, f(x, y) + w) : x, y ∈ R, w ≥ 0}.

The face F̄ contains (α, β, z̄) and has its vertices in {P̂1, . . . , P̂N}. Hence there
exist three vertices P̂j, P̂l, P̂s of F̄ such that (α, β, z̄) belongs to the convex hull

∆̂jls of P̂j, P̂l, P̂s. Then, by projection, (α, β) ∈ ∆jls; that is, {j, l, s} ∈ P(α,β).
Hence f(xj , yj) = θj , f(xl, yl) = θl, and f(xs, ys) = θs do not all agree. This
shows that f is not constant.

Let (cj, cl, cs) be the barycentric coordinates of (α, β) with respect to the
vertices of the triangle ∆jls . Then

f(α, β)= f(cjPj + clPl + csPs) = cjf(Pj) + clf(Pl) + csf(Ps)

= cjθj + clθl + csθs = θjls ≥ θ̄.

On the other hand, by the definition of θ̄, there exist {i, k, r} ∈ P(α,β) such that
θ̄ = θikr. Using the barycentric coordinates (ci, ck, cr) of (α, β) with respect to
the triangle ∆ikr, we obtain

f(α, β)= f(ciPi + ckPk + crPr) = cif(Pi) + ckf(Pk) + crf(Pr)

≤ ciθi + ckθk + crθr = θikr = θ̄.

This completes the proof of f(α, β) = θ̄. Hence f is admissible.

A similar construction, based on the upper end-point of l(α,β) ∩ Π̂, gives g. 2

8



Now let two non-constant admissible functions f, g be fixed. There exist real
numbers γ1, γ2, γ3, µ1, µ2, µ3 such that

f(x, y) = γ1x + γ2y + γ3 , g(x, y) = µ1x + µ2y + µ3.

Take any affine bijection R of type

R







x

y





 = A







x

y





 +







ξ

η







and let Π′ = R(Π) = P ′
1 · · ·P ′

N and (α′, β ′) = R(α, β).

Lemma 3.4 With notation introduced above, we have

(a) f ′ = f ◦R−1 and g′ = g ◦R−1 are admissible functions for Π′ and (α′, β ′).

Let f ′(x, y) = γ′
1x + γ′

2y + γ′
3 and g′(x, y) = µ′

1x + µ′
2y + µ′

3. Then

(b)







γ′
1 γ′

2

µ′
1 µ′

2





 =







γ1 γ2

µ1 µ2





 A−1 and







γ′
3

µ′
3





 =







γ3

µ3





−







γ1 γ2

µ1 µ2





 A−1







ξ

η





 .

Proof. The barycentric coordinates of (α, β) with respect to the triangle
PiPkPr coincide with the barycentric coordinates of (α′, β ′) with respect to
the triangle P ′

iP
′
kP

′
r. Therefore, the number θ̄ is the same for both polygons

and the same happens for θ̆. Hence,

f ′ = f ◦ R−1 and g′ = g ◦ R−1

are admissible functions for Π′ and (α′, β ′). Moreover,







f ′(x, y)

g′(x, y)





 =







γ1 γ2

µ1 µ2





 A−1







x − ξ

y − η





 +







γ3

µ3







which yields (b) and finishes the proof. 2

Lemma 3.5 There exists an affine bijection R such that

(i) µ′
1 = µ′

2 = 1 ,
(ii) γ′

1, γ
′
2 > 0 or γ′

1 = γ′
2 < 0 ,

(iii) y′
j ≥ 0 for 1 ≤ j ≤ N .
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Proof. Since both of the functions f and g are non-constant, the vectors
(γ1, γ2) and (µ1, µ2) are non-zero. Hence,

λ = rank







γ1 γ2

µ1 µ2





 ≥ 1 .

If λ = 1 there is a regular matrix B with

B







µ1

µ2





 =







1

1





 and B







γ1

γ2





 =







γ

γ





 with γ 6= 0.

Put A = (Bt)−1 and let







x̄j

ȳj





 = A







xj

yj





 , j = 1, ..., N .

With y0 = min{ȳ1, ..., ȳN} we define the affine bijection R via

R







x

y





 = A







x

y





 −







0

y0







and obtain immediately (iii). To see (i) and (ii) we apply Lemma 3.4/(b) and
obtain







γ′
1 γ′

2

µ′
1 µ′

2





 =







γ1 γ2

µ1 µ2





 Bt =







γ γ

1 1





 .

If λ = 2 we simply put

B =







1 1

1 2













µ1 γ1

µ2 γ2







−1

,

and proceed as above to derive that γ′
1 = 1, γ′

2 = 2, µ′
1 = µ′

2 = 1 and y′
j ≥ 0

for 1 ≤ j ≤ N . This finishes the proof. 2

We are now ready to establish the main result of this section. It shows that if
an N -tuple is formed by spaces of class C(θj ; X, Y ) then the spaces associated
to a polygon can be compared with sums and intersections of real interpolation
spaces.

Theorem 3.6 Let Π = P1 · · ·PN be a convex polygon with Pj = (xj, yj) and
let (α, β) ∈ Int Π. Suppose that {X, Y } is a Banach couple and that Ā =
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{A1, ..., AN} is a Banach N-tuple formed by spaces Aj of class C(θj ; X, Y ) with
0 ≤ θj ≤ 1, j = 1, ..., N . Assume also that for each {i, k, r} ∈ P(α,β), where
(α, β) ∈ Int PiPkPr, the numbers θi, θk, θr are not all equal. If (α, β) ∈ PiPk

we assume that θi 6= θk. Then for any 1 ≤ q ≤ ∞ we have the embeddings

(i)
Ā(α,β),q;K →֒ (X, Y )θ̄,q + (X, Y )θ̆,q ,

(ii)
(X, Y )θ̄,q ∩ (X, Y )θ̆,q →֒ Ā(α,β),q;J ,

where 0 < θ̄, θ̆ < 1 are given in Definition 3.1.

Proof. Let us apply Lemma 3.3 to find admissible functions

f(x, y) = γ1x + γ2y + γ3 , g(x, y) = µ1x + µ2y + µ3 .

According to Lemma 3.5 and the invariance under affine bijections, we can
assume without restriction that we have yj ≥ 0 for j = 1, ..., N , µ1 = µ2 = 1
and either

(Case A) γ1, γ2 > 0 or
(Case B) γ1 = γ2 = γ < 0.

Now we shall modify the arguments in [16, Lemma 2] to prove the embeddings
in (i) and (ii). We start with some estimates for K- and J-functionals. Consider
first the Case A. Let s ≥ t and 0 < t ≤ 1. Since f(xj , yj) ≤ θj and Aj is of
class C(θj ; X, Y ) (see, in particular, (2.3)), for a ∈ Σ(Ā) we obtain

K(tγ1 , sγ2; a) = inf
{ N

∑

j=1

tγ1xjsγ2yj‖aj‖Aj
: a =

N
∑

j=1

aj , aj ∈ Aj

}

= inf
{ N

∑

j=1

tγ1xj+γ2yj(s/t)γ2yj‖aj‖Aj

}

≥ inf
{ N

∑

j=1

tf(xj ,yj)−γ3‖aj‖Aj

}

≥ inf
{ N

∑

j=1

tθj−γ3‖aj‖Aj

}

& inf
{ N

∑

j=1

t−γ3K̄(t, aj)
}

≥ t−γ3K̄(t, a) . (3.1)

A similar calculation gives (3.1) for 0 < s ≤ t ≤ 1 in Case B.
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In both cases, using that g(xj, yj) = xj + yj +µ3 ≥ θj , for s ≥ t ≥ 1 we obtain
analogously

K(t, s; a) & t−µ3K̄(t, a) . (3.2)

Let us turn to estimates for J-functionals. In Case A, using (2.4), we obtain
for t ≥ 1, 0 < s ≤ t and u ∈ X ∩ Y

J(tγ1 , sγ2; u) = max{tf(xj ,yj)−γ3(s/t)γ2yj‖u‖Aj
: 1 ≤ j ≤ N}

≤max{tf(xj ,yj)−γ3‖u‖Aj
: 1 ≤ j ≤ N}

. t−γ3 max{tf(xj ,yj)−θj J̄(t, u) : 1 ≤ j ≤ N}
≤ t−γ3 J̄(t, u) . (3.3)

A similar calculation gives (3.3) for t ≥ 1 and s ≥ t in Case B.

In both cases, since g(xj, yj) = xj + yj + µ3 ≥ θj , for 0 < s ≤ t ≤ 1 we get

J(t, s; u) . t−µ3 J̄(t, u) . (3.4)

To prove the embedding (i) we start with a ∈ Ā(α,β),q;K . By change of variable
we get

‖a‖q
Ā(α,β),q;K

∼
∞
∫

0

∞
∫

0

[t−γ1αs−γ2βK(tγ1 , sγ2 ; a)]q
ds

s

dt

t
. (3.5)

In Case A, using (3.5) and (3.1), we obtain

‖a‖q
Ā(α,β),q;K

&

1
∫

0

2t
∫

t

[t−γ1αs−γ2βK(tγ1 , sγ2 ; a)]q
ds

s

dt

t

&

1
∫

0

2t
∫

t

[t−γ1αs−γ2βt−γ3K̄(t, a)]q
ds

s

dt

t

=

1
∫

0

[t−γ1αt−γ3K̄(t, a)]q
(

2t
∫

t

s−γ2βq ds

s

)

dt

t

∼
1

∫

0

[t−f(α,β)K̄(t, a)]q
dt

t

=

1
∫

0

[t−θ̄K̄(t, a)]q
dt

t
. (3.6)
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In Case B we start with

‖a‖q
Ā(α,β),q;K

&

1
∫

0

t
∫

t/2

[t−γ1αs−γ2βK(tγ1 , sγ2 ; a)]q
ds

s

dt

t

and end up with (3.6) as well.

Furthermore, since µ1 = µ2 = 1 and (3.2), in both cases we derive

‖a‖q
Ā(α,β),q;K

≥
∞
∫

1

2t
∫

t

[t−αs−βK(t, s; a)]q
ds

s

dt

t

&

∞
∫

1

[t−g(α,β)K̄(t, a)]q
dt

t

=

∞
∫

1

[t−θ̆K̄(t, a)]q
dt

t
. (3.7)

Using inequalities (3.6) and (3.7) and Holmstedt’s formula (see [3, Theorem
3.6.1] or [2, Theorem 5.2.1]) we see that a ∈ (X, Y )θ̄,q+(X, Y )θ̆,q and we derive
embedding (i).

Next we proceed with the embedding (ii). Take any a ∈ (X, Y )θ̄,q ∩ (X, Y )θ̆,q.
According to the fundamental lemma (see [3, Lemma 3.3.2]), there is a repre-
sentation of a =

∫ ∞
0 u(t) dt/t such that for all 0 < t < ∞

J̄(t, u(t)) . K̄(t, a) . (3.8)

In Case A we define the function v : (0,∞) × (0,∞) → X ∩ Y by

v(t, s) =



























u(t) if 0 < t ≤ 1 and t/e ≤ s ≤ t

1
γ1γ2

u(t1/γ1) if 1 < t < ∞ and t1/γ1/e ≤ s1/γ2 ≤ t1/γ1

0 otherwise .

Then
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∞
∫

0

∞
∫

0

v(t, s)
ds

s

dt

t
=

1
∫

0

∞
∫

0

v(t, s)
ds

s

dt

t
+

∞
∫

1

∞
∫

0

γ1γ2v(tγ1 , sγ2)
ds

s

dt

t

=

1
∫

0

t
∫

t/e

u(t)
ds

s

dt

t
+

∞
∫

1

t
∫

t/e

u(t)
ds

s

dt

t

=

∞
∫

0

u(t)
dt

t
= a .

We obtain by using (3.3)

∞
∫

1

[t−θ̄J̄(t, u(t))]q
dt

t
=

∞
∫

1

[t−γ1α−γ2β−γ3 J̄(t, u(t))]q
dt

t

&

∞
∫

1

t
∫

t/e

[t−γ1αs−γ2βJ(tγ1 , sγ2 ; u(t))]q
ds

s

dt

t

∼
∞
∫

1

∞
∫

0

[t−γ1αs−γ2βJ(tγ1 , sγ2 ; v(tγ1, sγ2))]q
ds

s

dt

t

∼
∞
∫

1

∞
∫

0

[t−αs−βJ(t, s; v(t, s))]q
ds

s

dt

t
. (3.9)

Similarly, we estimate by using (3.4)

1
∫

0

[t−θ̆J̄(t, u(t))]q
dt

t
&

1
∫

0

∞
∫

0

[t−αs−βJ(t, s; v(t, s))]q
ds

s

dt

t
. (3.10)

Finally, (3.8), (3.9) and (3.10) yield

‖a‖q
(X,Y )θ̄,q∩(X,Y )

θ̆,q
∼

∞
∫

0

[t−θ̆K̄(t, a)]q
dt

t
+

∞
∫

0

[t−θ̄K̄(t, a)]q
dt

t

&

1
∫

0

[t−θ̆J̄(t, u(t))]q
dt

t
+

∞
∫

1

[t−θ̄J̄(t, u(t))]q
dt

t

&

∞
∫

0

∞
∫

0

[t−αs−βJ(t, s; v(t, s))]q
ds

s

dt

t
,

(3.11)

which proves (ii) in Case A.
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For Case B we modify the definition of v(t, s) as follows

v(t, s) =



























u(t) if 0 < t ≤ 1 and t/e2 ≤ s < t/e

− 1
γ
u(t1/γ) if 0 < t ≤ 1 and t1/γ ≤ s1/γ ≤ e−1/γt1/γ

0 otherwise .

Again, we have

∞
∫

0

∞
∫

0

v(t, s)
ds

s

dt

t
=

1
∫

0

t/e
∫

t/e2

u(t)
ds

s

dt

t
− 1

γ

1
∫

0

t
∫

t/e

u(t1/γ)
ds

s

dt

t

=

1
∫

0

u(t)
dt

t
− 1

γ

1
∫

0

u(t1/γ)
dt

t

=

∞
∫

0

u(t)
dt

t
= a .

Using (3.3) we obtain

∞
∫

1

[t−θ̄J̄(t, u(t))]q
dt

t
=

∞
∫

1

[t−γα−γβ−γ3 J̄(t, u(t))]q
dt

t

&

∞
∫

1

te−1/γ
∫

t

[t−γαs−γβJ(tγ , sγ; u(t))]q
ds

s

dt

t

∼
∞
∫

1

te−1/γ
∫

t

[t−γαs−γβJ(tγ , sγ; v(tγ, sγ))]q
ds

s

dt

t

∼
∞
∫

1

tγ
∫

tγ/e

[t−γαs−βJ(tγ , s; v(tγ, s))]q
ds

s

dt

t

∼
1

∫

0

t
∫

t/e

[t−αs−βJ(t, s; v(t, s))]q
ds

s

dt

t
. (3.12)

With the aid of (3.4) we get similarly

1
∫

0

[t−θ̆J̄(t, u(t))]q
dt

t
&

1
∫

0

t/e
∫

t/e2

[t−αs−βJ(t, s; v(t, s))]q
ds

s

dt

t
. (3.13)

The same computations as done in (3.11) but using now (3.12) and (3.13)
yield (ii) in Case B. The proof is complete. 2
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Next we derive the reiteration result. We require a stronger assumption than
in Theorem 3.6. Namely, (α, β) must not lie in any diagonal of Π. As we shall
show in the next section, that assumption is essential for the result.

Theorem 3.7 Let Π = P1 · · ·PN be a convex polygon with Pj = (xj, yj) and
let (α, β) ∈ Int Π such that (α, β) does not lie in any diagonal of Π. Suppose
that {X, Y } is a Banach couple and that Ā = {A1, ..., AN} is a Banach N-
tuple formed by spaces Aj of class C(θj ; X, Y ) with 0 ≤ θj ≤ 1, j = 1, ..., N .
Assume also that for each {i, k, r} ∈ P(α,β) the numbers θi, θk, θr are not all
equal. Then, for any 1 ≤ q ≤ ∞, we have with equivalent norms

(i)
Ā(α,β),q;K = (X, Y )θ̄,q + (X, Y )θ̆,q , (3.14)

(ii)

Ā(α,β),q;J = (X, Y )θ̄,q ∩ (X, Y )θ̆,q , (3.15)

where 0 < θ̄, θ̆ < 1 are defined in Definition 3.1.

Proof. It follows from (2.5) and (2.6) that

Ā(α,β),q;J →֒ (X, Y )θ̄,q ∩ (X, Y )θ̆,q

and

(X, Y )θ̄,q + (X, Y )θ̆,q →֒ Ā(α,β),q;K .

The converse inclusions follow by Theorem 3.6. 2

Remark 3.8 Applying Theorem 3.7 to Π equal to the unit square we get an
improvement of [7, Theorem 3.1] by relaxing the conditions on θ1, θ2, θ3, θ4.

Next, we write down two concrete applications of Theorem 3.7. Let (Ω, µ) be
a σ-finite measure space. For 1 < p < ∞ and 1 ≤ q ≤ ∞, the Lorentz function
space Lp,q consists of all (equivalence classes of) measurable functions f on Ω
which have a finite norm

‖f‖Lp,q =
(

µ(Ω)
∫

0

[

t1/p−1

t
∫

0

f ∗(s) ds
]q dt

t

)1/q

,

(with the usual modification if q = ∞) where f ∗ stands for the non-increasing
rearrangement of f

f ∗(s) = inf{γ > 0 : µ({x ∈ Ω : |f(x)| > γ}) ≤ s} .

Since (L∞, L1)θ,q = Lp,q for 1/p = θ (see [2,3,24]), according to Theorem 3.7
we obtain the following.
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Corollary 3.9 Let Π = P1 · · ·PN be a convex polygon with Pj = (xj , yj)
and let (α, β) ∈ Int Π such that (α, β) does not lie in any diagonal of Π.
Assume that 1 < pj < ∞, 1 ≤ qj , q ≤ ∞, j = 1, ..., N , such that for each
{i, k, r} ∈ P(α,β) the numbers pi, pk, pr are not all equal. We put

1/pikr = ci/pi + ck/pk + cr/pr , {i, k, r} ∈ P(α,β)

where (ci, ck, cr) are the barycentric coordinates of (α, β) with respect to Pi, Pk, Pr.
Let

1/p̄ = min{1/pikr : {i, k, r} ∈ P(α,β)}, 1/p̆ = max{1/pikr : {i, k, r} ∈ P(α,β)} .

Then we have, with equivalent norms,

(Lp1,q1, ..., LpN ,qN
)(α,β),q;K = Lp̆,q + Lp̄,q

and

(Lp1,q1, ..., LpN ,qN
)(α,β),q;J = Lp̆,q ∩ Lp̄,q .

Next, we consider Besov spaces. Let S(Rd) and S ′(Rd) be the Schwartz space of
all rapidly decreasing complex-valued infinitely differentiable functions on Rd,
and the space of tempered distributions on Rd, respectively. For f ∈ S ′(Rd),
we denote by f̂ the Fourier transform and by f̌ the inverse Fourier transform.
Let ϕ0 be a C∞(Rd)-function with

ϕ0(x) =











1 if ‖x‖Rd ≤ 1

0 if ‖x‖Rd > 2 .

For j ∈ N, we put ϕj(x) = ϕ0(2
−jx) − ϕ0(2

−j+1x) .

Let 1 < p < ∞, 1 ≤ q ≤ ∞ and s ∈ R. The Besov space Bs
p,q = Bs

p,q(R
d) is

formed by all f ∈ S ′(Rd) having a finite norm

‖f‖Bs
p,q

=
( ∞

∑

j=0

2jsq‖(ϕj f̂)∨‖q
Lp(Rd)

)1/q

(see [24,25]). If s0 < s1, then Bs1
p,q →֒ Bs0

p,q. Moreover, if −∞ < s0 6= s1 < ∞,
0 < θ < 1, s = (1 − θ)s0 + θs1, 1 < p < ∞ and 1 ≤ q0, q1, q ≤ ∞, then

(Bs0
p,q0

, Bs1
p,q1

)θ,q = Bs
p,q .

Hence, as a direct consequence of Theorem 3.7 we derive the following.

Corollary 3.10 Let Π = P1 · · ·PN be a convex polygon with Pj = (xj , yj) and
let (α, β) ∈ Int Π such that (α, β) does not lie in any diagonal of Π. Suppose
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that 1 < p < ∞, 1 ≤ qj , q ≤ ∞,−∞ < sj < ∞, j = 1, ..., N , such that for
each {i, k, r} ∈ P(α,β) the numbers si, sk, sr are not all equal. We put

sikr = cisi + cksk + crsr , {i, k, r} ∈ P(α,β) ,

where (ci, ck, cr) are the barycentric coordinates of (α, β) with respect to Pi, Pk, Pr.
Let

s̄ = min{sikr : {i, k, r} ∈ P(α,β)} , s̆ = max{sikr : {i, k, r} ∈ P(α,β)} .

Then we have with equivalent norms

(Bs1
p,q1

, ..., BsN
p,qN

)(α,β),q;K = Bs̄
p,q

and

(Bs1
p,q1

, ..., BsN
p,qN

)(α,β),q;J = Bs̆
p,q .

4 Counterexamples

Suppose now that (α, β) lies in any diagonal of Π, say PiPk (see Figure 4.1).

bc

bcbc

bc

bc

bc bc

bc

bc

Pk

Pr

Pi

(α, β)

Figure 4.1

Then for any triangle PiPkPr we have {i, k, r} ∈ P(α,β) but now (α, β) is not
in the interior of PiPkPr. As a consequence, see [10, Lemma 1.1], if q < ∞
then (Ai, Ak, Ar)(α,β),q;K = {0}, and (2.6) fails in this case. However, for the
K-method with q = ∞ and the J-method with q = 1, it has been shown by
Cobos, Fernández-Cabrera and Mart́ın in [7, Theorem 4.1] that the conclusion
of Theorem 3.7 is still valid under the assumptions of Theorem 3.6. We consider
now the other cases. By means of examples, we shall show that embeddings

(X, Y )θ̄,q + (X, Y )θ̆,q →֒ Ā(α,β),q;K (4.1)
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and

Ā(α,β),q;J →֒ (X, Y )θ̄,q ∩ (X, Y )θ̆,q (4.2)

may not hold. Hence, Theorem 3.7 fails in general if 1 < q < ∞ and (α, β) is
in any diagonal.

Counterexample 4.1 Take any 1 ≤ q < ∞ and assume that Π is the unit
square Π = (0, 0)(1, 0)(0, 1)(1, 1). Consider the interior point (α, α) with 1/2 <
α < 1, and take the 4-tuple {X, X, X, Y }, where X, Y are Banach spaces with
X →֒ Y (see Figure 4.2). Hence, θ1 = θ2 = θ3 = 0 and θ4 = 1.

bc

bc

bc

bc

Y

X

X

X

bc
(α,α)

Figure 4.2

For any {i, k, r} ∈ P(α,α) the numbers θi, θk, θr are not all equal. Moreover,
θ1 6= θ4. Since θ124 = θ134 = α and θ234 = 2α − 1, we have θ̄ = 2α − 1 and
θ̆ = α. Assumption X →֒ Y implies that (X, Y )θ̄,q →֒ (X, Y )θ̆,q. Therefore

(X, Y )θ̄,q + (X, Y )θ̆,q = (X, Y )α,q .

To determine the space (X, X, X, Y )(α,α),q;K we put

ωj =
∫∫

Ωj

[(ts)−αK(t, s; a)]q
dt

t

ds

s
, j = 1, 2, 3 ,

and define ω′
j similarly. Here Ωj and Ω′

j are the sets described in Figure 4.3.
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Ω1

Ω′
1

Ω2

Ω′
2

Ω3

Ω′
3

1

1

t

s

Figure 4.3

We have

‖a‖q
(X,X,X,Y )(α,α),q;K

=
3

∑

j=1

(ωj + ω′
j) .

One can estimate each of those integrals by using that

K(t, s; a) = min{1, t, s}K̄
(

st

min{1, t, s} , a
)

, a ∈ Y.

For ω1 we get

ω1 =

∞
∫

1

1
∫

0

[(ts)−αsK̄(t, a)]q
ds

s

dt

t

∼
∞
∫

1

[t−αK̄(t, a)]q
dt

t
.

For ω2, using that K̄(t, a) ∼ t‖a‖Y if t ≤ 1, we obtain

ω2 =

1
∫

0

t
∫

0

[(ts)−αsK̄(t, a)]q
ds

s

dt

t

∼
1

∫

0

[t1−2αK̄(t, a)]q
dt

t

∼‖a‖q
Y .

∞
∫

1

[t−αK̄(t, a)]q
dt

t
.

For ω3 we derive
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ω3 =

∞
∫

1

∞
∫

s

[(ts)−αK̄(st, a)]q
dt

t

ds

s

=

∞
∫

1

∞
∫

s2

[w−αK̄(w, a)]q
dw

w

ds

s

=

∞
∫

1

[w−αK̄(w, a)]q

√
w

∫

1

ds

s

dw

w

∼
∞
∫

1

[w−α(log w)1/qK̄(w, a)]q
dw

w

∼
∞
∫

1

[w−α(1 + log w)1/qK̄(w, a)]q
dw

w
.

Due to the symmetry between Ωj and Ω′
j , the remaining terms can be esti-

mated similarly. Consequently,

‖a‖(X,X,X,Y )(α,α),q;K
∼

(

∞
∫

1

[t−α(1 + log t)1/qK̄(t, a)]q
dt

t

)1/q

. (4.3)

Now, consider [0, 1] with the usual Lebesgue measure and take X = L∞ and
Y = L1. Then (L∞, L1)α,q = L1/α,q. By interpolating the 4-tuple it follows

from (4.3) and the well-known equality K̄(t, f) = t
∫ 1/t
0 f ∗(s) ds that

(L∞, L∞, L∞, L1)(α,α),q;K

=
{

f :
(

1
∫

0

[

tα−1(1 + | log t|)1/q

t
∫

0

f ∗(s) ds
]q dt

t

)1/q

< ∞
}

.

The last space is the Lorentz-Zygmund function space L1/α,q(log L)1/q (see
[2,15]) . Clearly, L1/α,q * L1/α,q(log L)1/q, so (4.1) fails in this case.

Counterexample 4.2 Take any 1 < q ≤ ∞ and the unit square Π =
(0, 0)(1, 0)(0, 1)(1, 1). Consider now the point (α, α) with 0 < α < 1/2 and the
4-tuple {X, Y, Y, Y } where X →֒ Y . Then we have θ1 = 0, θ2 = θ3 = θ4 = 1.
For any {i, k, r} ∈ P(α,α) the numbers θi, θk, θr are not all equal and θ1 6= θ4.

Since θ123 = 2α and θ124 = θ134 = α, we obtain θ̄ = α, θ̆ = 2α and

(X, Y )θ̄,q ∩ (X, Y )θ̆,q = (X, Y )α,q .

We are going to show that

(X, Y )ρ,q →֒ (X, Y, Y, Y )(α,α),q;J , (4.4)
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where ρ(t) = tα(1 + | log t|)1/q′ , 1/q + 1/q′ = 1, and (X, Y )ρ,q is the J-space
with function parameter ρ, that is to say the collection of all those a ∈ Y
for which there is a strongly measurable X-valued function u(t) such that
a =

∫ ∞
1 u(t) dt/t (convergence in Y ) and (

∫ ∞
1 [(1/ρ(t))J̄(t, u(t))]q dt/t)1/q < ∞.

The norm is defined in the usual way

‖a‖(X,Y )ρ,q = inf
{(

∞
∫

1

[
1

ρ(t)
J̄(t, u(t))]q

dt

t

)1/q

: a =

∞
∫

1

u(t)
dt

t

}

.

(See [21,22] for details on the real method with a function parameter; since
X →֒ Y , we consider only integrals on (1,∞).)

Let a =
∫ ∞
1 u(t) dt/t with

(

∞
∫

1

[
1

ρ(t)
J̄(t, u(t))]q

dt

t

)1/q

≤ 2‖a‖(X,Y )ρ,q .

We put

v(t, s) =



























u(ts)
1+log(ts)

if 1/e ≤ t ≤ e and max{1/t, 1} ≤ s ≤ e/t

2 u(ts)
1+log(ts)

if 1 < t < ∞ and max{e/t, 1} < s ≤ et

0 otherwise .

A change of variable for s yields

∞
∫

0

∞
∫

0

v(t, s)
ds

s

dt

t
=

1
∫

1/e

e
∫

1

u(w)

1 + log w

dw

w

dt

t
+

e
∫

1

e
∫

t

u(w)

1 + log w

dw

w

dt

t

+2

e
∫

1

et2
∫

e

u(w)

1 + log w

dw

w

dt

t
+ 2

∞
∫

e

et2
∫

t

u(w)

1 + log w

dw

w

dt

t
.

Changing the order of integration and combining the first two integrals as well
as the second two integrals we obtain

∞
∫

0

∞
∫

0

v(t, s)
ds

s

dt

t
=

e
∫

1

u(w)

1 + log w

w
∫

1/e

dt

t

dw

w
+

∞
∫

e

2
u(w)

1 + log w

w
∫

√
w/e

dt

t

dw

w

=

∞
∫

1

u(w)
dw

w
= a .
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Consequently,

‖a‖q
(X,Y,Y,Y )(α,α),q;J

≤
(

1
∫

1/e

e/t
∫

1/t

+

e
∫

1

e/t
∫

1

+

e
∫

1

et
∫

e/t

+

∞
∫

e

et
∫

1

)

[(ts)−αJ(t, s; v(t, s))]q
ds

s

dt

t
.

In the domains of the last three integrals we have max{t, s, ts} = ts. Thus, we
get

J(t, s; v(t, s)) ∼ 1

1 + log(ts)
J̄(ts, u(ts)) .

In the domain of the first integral we have t ≤ ts ≤ s ≤ ets. Hence, we derive

J(t, s; v(t, s)) ∼ 1

1 + log(ts)
J̄(s, u(ts)) ∼ 1

1 + log(ts)
J̄(ts, u(ts)) .

Using this estimate we obtain similar as above after a change of variable and
a change of the order of integration (again we combine the first two and the
last two integrals)

‖a‖q
(X,Y,Y,Y )(α,α),q;J

.

e
∫

1

[w−αJ̄(w, u(w))]q
1

(1 + log w)q

w
∫

1/e

dt

t

dw

w

+

∞
∫

e

[w−αJ̄(w, u(w))]q
1

(1 + log w)q

w
∫

√
w/e

dt

t

dw

w

∼
∞
∫

1

[
1

ρ(w)
J̄(w, u(w))]q

dw

w
.

This establishes (4.4). The converse embedding to (4.4) holds as well, but we
do not need it here.

Take now [0, 1] with the usual Lebesgue measure and put X = L∞, Y =
L1. Then (L∞, L1)α,q = L1/α,q. On the other hand, since X →֒ Y and the
equivalence theorem holds for the function parameter ρ (see [21, Theorem
2.2]), we have for the Lorentz-Zygmund space L1/α,q(log L)−1/q′ that

L1/α,q(log L)−1/q′

=
{

f :
(

1
∫

0

[

tα−1(1 + | log t|)−1/q′
t

∫

0

f ∗(s) ds
]q dt

t

)1/q

< ∞
}

=
{

f :
(

∞
∫

1

[

t−α+1(1 + log t)−1/q′
1/t
∫

0

f ∗(s) ds
]q dt

t

)1/q

< ∞
}

= (L∞, L1)ρ,q .
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Hence,

L1/α,q(log L)−1/q′ →֒ (L∞, L1, L1, L1)(α,α),q;J .

Since

L1/α,q(log L)−1/q′ * L1/α,q

it follows that (4.2) fails in this case.

We finish the paper by recalling that interpolation by the methods associated
to the unit square of the 4-tuple {X, Y, Y, X} with X →֒ Y and (α, β) in the
diagonals results in extrapolation spaces of the type (X, Y )0,q or (X, Y )1,q (see
[7,6]).
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